Strain engineering water transport in graphene nanochannels.

نویسندگان

  • Wei Xiong
  • Jefferson Zhe Liu
  • Ming Ma
  • Zhiping Xu
  • John Sheridan
  • Quanshui Zheng
چکیده

Using equilibrium and nonequilibrium molecular dynamic simulations, we found that engineering the strain on the graphene planes forming a channel can drastically change the interfacial friction of water transport through it. There is a sixfold change of interfacial friction stress when the strain changes from -10% to 10%. Stretching the graphene walls increases the interfacial shear stress, while compressing the graphene walls reduces it. Detailed analysis of the molecular structure reveals the essential roles of the interfacial potential energy barrier and the structural commensurateness between the solid walls and the first water layer. Our results suggest that the strain engineering is an effective way of controlling the water transport inside nanochannels. The resulting quantitative relations between shear stress and slip velocity and the understanding of the molecular mechanisms will be invaluable in designing graphene nanochannel devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultrafast liquid water transport through graphene-based nanochannels measured by isotope labelling.

Based on isotope labelling, we found that liquid water can afford an ultrafast permeation through graphene-based nanochannels with a diffusion coefficient 4-5 orders of magnitude greater than in the bulk case. When dissolving ions in sources, the diffusion coefficient of ions through graphene channels lies in the same order of magnitude as water, while the ion diffusion is slightly faster than ...

متن کامل

Graphene-based membranes.

Graphene is a well-known two-dimensional material that exhibits preeminent electrical, mechanical and thermal properties owing to its unique one-atom-thick structure. Graphene and its derivatives (e.g., graphene oxide) have become emerging nano-building blocks for separation membranes featuring distinct laminar structures and tunable physicochemical properties. Extraordinary molecular separatio...

متن کامل

Intrinsic high water/ion selectivity of graphene oxide lamellar membranes in concentration gradient-driven diffusion.

Although graphene oxide lamellar membranes (GOLMs) are effective in blocking large organic molecules and nanoparticles for nanofiltration and ultrafiltration, water desalination with GOLM is challenging, with seriously controversial results. Here, a combined experimental and molecular dynamics simulation study shows that intrinsic high water/ion selectivity of GOLM was achieved in concentration...

متن کامل

Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes.

Pressure-driven ultrafiltration membranes are important in separation applications. Advanced filtration membranes with high permeance and enhanced rejection must be developed to meet rising worldwide demand. Here we report nanostrand-channelled graphene oxide ultrafiltration membranes with a network of nanochannels with a narrow size distribution (3-5 nm) and superior separation performance. Th...

متن کامل

Graphene-Based Planar Nanofluidic Rectifiers

Structurally symmetric two-dimensional multilayered graphene oxide films, which facilitate ion transport through “nanochannels” comprising the interstitial spaces between each stacked sheet within the film, are for the first time shown to exhibit peculiar ion current rectification and nonlinear current− voltage characteristics below a critical electrolyte concentration when the interstitial spa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 84 5 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2011